LISTRIK


LISTRIK STATIS
Listrik statis adalah ketidakseimbangan muatan listrik dalam atau pada permukaan benda. Muatan listrik tetap ada sampai benda kehilangannya dengan cara sebuah arus listrik melepaskan muatan listrik. Listrik statis kontras dengan arus listrik, yang mengalir melalui kabel atau konduktor lainnya dan mentransmisikan listrik.[1]
Sebuah muatan listrik statis dibuat setiap kali dua permukaan terhubung dan terpisah, dan setidaknya salah satu permukaan memiliki resistensi yang tinggi terhadap arus listrik (dan karena itu adalah isolator listrik). Efek listrik statis yang akrab bagi kebanyakan orang karena orang dapat merasakan, mendengar, dan bahkan melihat percikan sebagai kelebihan muatan dinetralkan ketika dibawa dekat dengan konduktor listrik yang besar (misalnya, dialirkan ke tanah (ground)).



MUATAN LISTRIK
Muatan listrik adalah muatan dasar yang dimiliki suatu benda, yang membuatnya mengalami gaya pada benda lain yang berdekatan dan juga memiliki muatan listrik. Simbol Q sering digunakan untuk menggambarkan muatan. Sistem Satuan Internasional dari satuan Q adalah coulomb, yang merupakan 6.24 x 1018 muatan dasar. Q adalah sifat dasar yang dimiliki oleh materi baik itu berupa proton (muatan positif) maupun elektron (muatan negatif). Muatan listrik total suatu atom atau materi ini bisa positif, jika atomnya kekurangan elektron. Sementara atom yang kelebihan elektron akan bermuatan negatif. Besarnya muatan tergantung dari kelebihan atau kekurangan elektron ini, oleh karena itu muatan materi/atom merupakan kelipatan dari satuan Q dasar. Dalam atom yang netral, jumlah proton akan sama dengan jumlah elektron yang mengelilinginya (membentuk muatan total yang netral atau tak bermuatan).



ARUS LISTRIK
Arus listrik adalah banyaknya muatan listrik yang disebabkan dari pergerakan elektron-elektron, mengalir melalui suatu titik dalam sirkuit listrik tiap satuan waktu. [1] Arus listrik dapat diukur dalam satuan Coulomb/detik atau Ampere.[1] Contoh arus listrik dalam kehidupan sehari-hari berkisar dari yang sangat lemah dalam satuan mikroAmpere (\mu A) seperti di dalam jaringan tubuh hingga arus yang sangat kuat 1-200 kiloAmpere (kA) seperti yang terjadi pada petir.[2][3] Dalam kebanyakan sirkuit arus searah dapat diasumsikan resistansi terhadap arus listrik adalah konstan sehingga besar arus yang mengalir dalam sirkuit bergantung pada voltase dan resistansi sesuai dengan hukum Ohm.[1]
Arus listrik merupakan satu dari tujuh satuan pokok dalam satuan internasional.[4] Satuan internasional untuk arus listrik adalah Ampere (A).[4] Secara formal satuan Ampere didefinisikan sebagai arus konstan yang, bila dipertahankan, akan menghasilkan gaya sebesar 2 x 10-7 Newton/meter di antara dua penghantar lurus sejajar, dengan luas penampang yang dapat diabaikan, berjarak 1 meter satu sama lain dalam ruang hampa udara.[4]



LISTRIK
Listrik adalah rangkaian fenomena fisika yang berhubungan dengan kehadiran dan aliran muatan listrik. Listrik menimbulkan berbagai macam efek yang telah umum diketahui, seperti petir, listrik statis, induksi elektromagnetik dan arus listrik. Adanya listrik juga bisa menimbulkan dan menerima radiasi elektromagnetik seperti gelombang radio.

Dalam listrik, muatan menghasilkan medan elektromagnetik yang dilakukan ke muatan lainnya. Listrik muncul akibat adanya beberapa tipe fisika:

muatan listrik: sifat beberapa partikel subatomik yang menentukan interaksi elektromagnetik. Substansi yang bermuatan listrik menghasilkan dan dipengaruhi oleh medan elektromagnetik
medan listrik (lihat elektrostatis): tipe medan elektromagnetik sederhana yang dihasilkan oleh muatan listrik ketika diam (maka tidak ada arus listrik). Medan listrik menghasilkan gaya ke muatan lainnya
potensial listrik: kapasitas medan listrik untuk melakukan kerja pada sebuah muatan listrik, biasanya diukur dalam volt
arus listrik: perpindahan atau aliran partikel bermuatan listrik, biasanya diukur dalam ampere
elektromagnet: Muatan berpindah menghasilkan medan magnet. Arus listrik menghasilkan medan magnet dan perubahan medan magnet menghasilkan arus listrik
Pada teknik elektro, listrik digunakan untuk:
tenaga listrik yang digunakan untuk menghidupkan peralatan
elektronik yang berhubungan dengan sirkuit listrik yang melibatkan komponen listrik aktif seperti tabung vakum, transistor, dioda dan sirkuit terintegrasi
Fenomena listrik telah dipelajari sejak zaman purba, meskipun pemahaman secara teoritisnya berkembang lamban hingga abad ke-17 dan 18. Meski begitu, aplikasi praktisnya saat itu masih sedikit, hingga di akhir abad ke-19 para insinyur dapat memanfaatkannya pada industri dan rumah tangga. Perkembangan yang luar biasa cepat pada teknologi listrik mengubah industri dan masyarakat. Fleksibilitas listrik yang amat beragam menjadikan penggunaannya yang hampir tak terbatas seperti transportasi, pemanasan, penerangan, telekomunikasi, dan komputasi. Tenaga listrik saat ini adalah tulang punggung masyarakat industri modern.[1]



ISOLATOR LISTRIK
Isolator listrik adalah bahan yang tidak bisa atau sulit melakukan perpindahan muatan listrik. Dalam bahan isolator valensi elektronnya terikat kuat pada atom-atomnya. Bahan-bahan ini dipergunakan dalam alat-alat elektronika sebagai isolator, atau penghambat mengalirnya arus listrik. Isolator berguna pula sebagai penopang beban atau pemisah antara konduktor tanpa membuat adanya arus mengalir ke luar atau atara konduktor. Istilah ini juga dipergunakan untuk menamai alat yang digunakan untuk menyangga kabel transmisi listrik pada tiang listrik.

Beberapa bahan, seperti kaca, kertas, atau Teflon merupakan bahan isolator yang sangat bagus. Beberapa bahan sintetis masih "cukup bagus" dipergunakan sebagai isolator kabel. Contohnya plastik atau karet. Bahan-bahan ini dipilih sebagai isolator kabel karena lebih mudah dibentuk / diproses sementara masih bisa menyumbat aliran listrik pada voltase menengah (ratusan, mungkin ribuan volt).



RANGKAIAN LISTRIK
Rangkaian listrik (Inggris: electrical circuit) adalah sambungan dari bermacam-macam elemen listrik pasif seperti resistor, kapasitor, induktor, transformator, sumber tegangan, sumber arus, dan saklar (switch). Istilah sirkuit listrik sedikit dibedakan dari jaringan listrik (electrical network atau electrical distribution network), di mana jaringan listrik membahas penggunaan sirkuit listrik dalam skop yang lebih luas seperti dalam jaringan distribusi pembangkit listrik dari generator pembangkit sampai pada pelanggan listrik di masing-masing rumah. Sebetulnya kedua macam rangkaian ini menggunakan prinsip dasar yang sama, hanya dalam jaringan listrik dibahas mengenai jalur transmisi yaitu mengenai sifat kabel pada frekuensi tinggi.

Sirkuit listrik ini sering dibahas dan dianalisis dalam tiga macam respons (tanggap waktu): respons-nya terhadap arus atau tegangan DC (Direct Current, atau arus baterai misalnya), respons-nya terhadap arus atau tegangan AC (Alternating Current, seperti arus PLN misalnya), dan respons-nya terhadap waktu transien. Listrik arus DC sering dikenal juga sebagai listrik arus searah, dan listrik arus AC diartikan juga sebagai listrik arus bolak-balik. Beberapa hukum listrik yang biasa dipakai dalam analisis sirkuit listrik ini adalah:



KONDUKTOR
Penghantar dalam teknik elektronika adalah zat yang dapat menghantarkan arus listrik, baik berupa zat padat, cair atau gas. Karena sifatnya yang konduktif maka disebut konduktor. Konduktor yang baik adalah yang memiliki tahanan jenis yang kecil. Pada umumnya logam bersifat konduktif. Emas, perak, tembaga, alumunium, zink, besi berturut-turut memiliki tahanan jenis semakin besar. Jadi sebagai penghantar emas adalah sangat baik, tetapi karena sangat mahal harganya, maka secara ekonomis tembaga dan alumunium paling banyak digunakan.




RANGKAIAN SERI
Rangkaian Seri adalah salah satu rangkaian listrik yang disusun secara sejajar (seri). Baterai dalam senter umumnya disusun dalam rangkaian seri.

Rangkaian Paralel adalah salah satu rangkaian listrik yang disusun secara berderet (paralel). Lampu yang dipasang di rumah umumnya merupakan rangkaian paralel. Rangkaian listrik paralel adalah suatu rangkaian listrik, di mana semua input komponen berasal dari sumber yang sama. Semua komponen satu sama lain tersusun paralel. Hal inilah yang menyebabkan susunan paralel dalam rangkaian listrik menghabiskan biaya yang lebih banyak (kabel penghubung yang diperlukan lebih banyak). Selain kelemahan tersebut, susunan paralel memiliki kelebihan tertentu dibandingkan susunan seri. Adapun kelebihannya adalah jika salah satu komponen dicabut atau rusak, maka komponen yang lain tetap berfungsi sebagaimana mestinya

Gabungan antara rangkaian seri dan rangkaian paralel disebut rangkaian seri-paralel (kadang disebut sebagai rangkaian campuran atau rangkaian kombinasi).




HUKUM SIRKUIT Kirchhoff
Hukum-hukum Sirkuit Kirchhoff adalah dua persamaan yang membahas kekekalan muatan dan energi dalam sirkuit listrik, dan pertama dijabarkan pada tahun 1845 oleh Gustav Kirchhoff. Hukum-hukum ini juga sering disebut sebagai Hukum Kirchhoff (lihat juga hukum Kirchhoff untuk arti lain) dan seringkali digunakan dalam teknik elektro

Kedua hukum sirkuit ini dapat diturunkan dari persamaan Maxwell, tapi Kirchhoff ada sebelum Maxwell dan menggunakan pekerjaan dari Georg Ohm untuk menghasilkan hukumnya.



HUKUM OHM
Hukum Ohm adalah suatu pernyataan bahwa besar arus listrik yang mengalir melalui sebuah penghantar selalu berbanding lurus dengan beda potensial yang diterapkan kepadanya.[1][2] Sebuah benda penghantar dikatakan mematuhi hukum Ohm apabila nilai resistansinya tidak bergantung terhadap besar dan polaritas beda potensial yang dikenakan kepadanya.[1] Walaupun pernyataan ini tidak selalu berlaku untuk semua jenis penghantar, namun istilah "hukum" tetap digunakan dengan alasan sejarah.[1]

Secara matematis hukum Ohm diekspresikan dengan persamaan:[3][4]


V = I R\
Di mana :

I adalah arus listrik yang mengalir pada suatu penghantar dalam satuan Ampere.
V adalah tegangan listrik yang terdapat pada kedua ujung penghantar dalam satuan volt.
R adalah nilai hambatan listrik (resistansi) yang terdapat pada suatu penghantar dalam satuan ohm.
Hukum ini dicetuskan oleh George Simon Ohm, seorang fisikawan dari Jerman pada tahun 1825 dan dipublikasikan pada sebuah paper yang berjudul The Galvanic Circuit Investigated Mathematically pada tahun 1827. [5]




HUKUM NORTON
Teorema Norton adalah salah satu teorema yang berguna untuk analisis sirkuit listrik.[1] Teorema Norton menunjukkan bahwa keseluruhan jaringan listrik tertentu, kecuali beban, dapat diganti dengan sirkuit ekuivalen yang hanya mengandung sumber arus listrik independen dengan sebuah resistor yang terhubung secara paralel, sedemikian hingga hubungan antara arus listrik dan tegangan pada beban tidak berubah.[1] Sirkuit baru hasil dari aplikasi teorema Norton disebut dengan sirkuit ekuivalen Norton.[1] Teorema ini dinamakan sesuai dengan penemunya, seorang insinyur yang pernah bekerja pada Bell Telephone Laboratories, yang bernama E. L. Norton[1]

Ditentukan sebuah jaringan listrik seperti pada gambar dan bagian dalam kotak hitam yang akan dicari sirkuit ekuivalennya; nilai sumber arus I_{no} pada sirkuit ekuivalen Norton didapatkan dengan membuat hubungan-singkat antara terminal A dan B lalu dihitung besar arus yang mengalir melalui terminal tersebut.[2] Sedangkan nilai resistor pengganti R_{no} dapat dihitung dengan mematikan semua sumber tegangan dan arus lalu dihitung nilai ekuivalen resistansi di antara terminal A dan B.[2]

Penggunaan utama dari teorema Norton adalah menyederhanakan sebagian besar dari sirkuit dengan sirkuit ekuivalen yang sederhana.[3]




HUKUM THEVERIN
Teorema Thevenin adalah salah satu teorema yang berguna untuk analisis sirkuit listrik.[1] Teorema Thevenin menunjukkan bahwa keseluruhan jaringan listrik tertentu, kecuali beban, dapat diganti dengan sirkuit ekuivalen yang hanya mengandung sumber tegangan listrik independen dengan sebuah resistor yang terhubung secara seri, sedemikian hingga hubungan antara arus listrik dan tegangan pada beban tidak berubah.[1] Sirkuit baru hasil dari aplikasi teorema Thevenin disebut dengan sirkuit ekuivalen Thevenin.[1] Teorema ini dinamakan sesuai dengan penemunya, seorang insinyur berkebangsaan Perancis, M. L. Thévenin.[1]

Ditentukan sebuah jaringan listrik seperti pada gambar dan bagian dalam kotak hitam yang akan dicari sirkuit ekuivalennya; nilai sumber tegangan V_{th} pada sirkuit ekuivalen Thevenin didapatkan dengan melepaskan resistor beban di antara terminal A dan B lalu dihitung besar tegangan sirkuit terbuka di antara kedua terminal tersebut.[2] Sedangkan nilai resistor pengganti R_{th} dapat dihitung dengan mematikan semua sumber tegangan dan arus lalu dihitung nilai ekuivalen resistansi di antara terminal A dan B.[2]

Penggunaan utama dari teorema Thevenin adalah menyederhanakan sebagian besar dari sirkuit dengan sirkuit ekuivalen yang sederhana.[3]




RESISTOR
Resistor merupakan komponen elektronik yang memiliki dua pin dan didesain untuk mengatur tegangan listrik dan arus listrik, dengan resistansi tertentu (tahanan) dapat memproduksi tegangan listrik di antara kedua pin, nilai tegangan terhadap resistansi berbanding lurus dengan arus yang mengalir, berdasarkan hukum Ohm:

\begin{align}V&=IR\\
I&=\frac{V}{R}\end{align}
Resistor digunakan sebagai bagian dari rangkaian elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-maca kompon dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).

Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat dihantarkan. Karakteristik lain termasuk koefisien suhu, derau listrik (noise), dan induktansi.

Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, kebutuhan daya resistor harus cukup dan disesuaikan dengan kebutuhan arus rangkaian agar tidak terbakar.




Dunia Digital © 2017. All Rights Reserved | Powered By waidi

Published By dunia digital keren | Designed by- waidi